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CONNECTED COMPONENTS OF MODULI
SPACES

F. CATANESE

0. Introduction

Let S be a minimal surface of general type (complete and smooth over C),
and let # =.#(S) (resp., A %) be the coarse moduli space of complex
structures on the oriented topological (resp., differential) 4-manifold under-
lying S.

By Gieseker’s theorem [5], #(S) is a quasiprojective variety, and the
number »(S) of its irreducible components is bounded by a function »y(K 2, x)
of the two (topological) invariants K2 = K2, x = x(0s).

Let A(S) be the number of connected components of .#(S): this short note
answers a question raised in a previous paper [1], showing that the above
number A(S) can be arbitrarily large.

As in [1], to which we shall constantly refer, again we restrict our attention
to bidouble (i.e., Galois with group (Z /2)?) covers of Q@ = P! X P1: indeed,
(cf. [2])) we conjecture a stronger result to hold true, namely that many of the
different irreducible components of .# we thus obtain are in fact connected
components of /Z.

The idea of proof is rather simple: if S and S’ are deformations of each
other, then there exists a diffeomorphism f: S — S’ such that f*(Ky) = K
€ H*(S,Z), and, in particular, if r(S) = max{r € N|(1/r)K; € H*(S,Z)},
then r(S) = r(S".

In view of Donaldson’s recent result [3], it is possible that the integer r(S)
could be an invariant of the differentiable structure for these surfaces; it is not
clear at the moment whether nicer properties are enjoyed by the moduli spaces
M YH(S). Nevertheless, when the complex dimension is at least 3, it seems (cf.
[6], [7] that similar phenomena of high disconnectedness should appear also
for .4 4ift,
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1. Statement and proof of the main result

Theorem. For each natural number k there exist minimal models Sy, - -, S,
of surfaces of general type such that

(a) S, is simply-connected (i = 1,-- -, k),

(b) for i #j, S; and S; are (orientedly) homeomorphic but not a deformation
of each other.

Remark 1. From the proof it shall also follow that the number of moduli of
S; (cf. [1, p. 484)) differs from the number of moduli of S, for i # j.

Let us recall an arithmetical result, proved by E. Bombieri in the Appendix
to [1}.

Lemma 2. For each positive integer k, there exist integers m, T, and k
distinct factorizations of 6™,

uv,=6m (i=1,-,k),

together with integers w;, z; (i =1,---,k) such that, setting u,= Tu; and
= Tv!, the following system of equalities and inequalities is . satisfied for
i=1,-- k:

uv,=T6" =M, wz,—2u,+0v,)=N
(v, +2)/3<w,<u;,—4, (v,+2)/3<z,<v,— 4.

Corollary 3. In the notations of Lemma 2, the greatest common divisors
(u;,v;) assume at least k/2 distinct values.

Proof. Set u; = 2*3%, We can clearly assume x; < m — x,, hence (u,,v,)
= T2%3mn0wm=r), Since the factorizations are distinct, (u;,v,) = (u;,v,) for
i#jifandonlyif x,=x;, y,=m—y. qed.

Given a smooth pIOJectlve variety X we denote by NS(X ) the Neron-Severi
group of divisors modulo numerical equivalence (which we shall denote by ~ ,
leaving the symbol = for linear equivalence). Note that, more generally on a
compact complex manifold X,

NS(X) = (ker( H*(X,Z) - H*(X, 0y)))/torsion.

Lemma 4. Let X, Y be smooth projective varieties and let w:X — Y be a
finite Galois cover with group G. Then

(i) 7* : NS(Y) > NS(X) is injective, maps to L = (kerm,)* = NS(X), a
L/ima* is a torsion subgroup of exponent at most the order of G.

If By,---, B, are the irreducible components of the branch divisor B of m,
let (for i =1,---,k) e, be the order of the inertia group of any divisor in
7 Y(B,), let d, be the order of divisibility of the class of B, in NS(Y) (d; =
max{d |31, s.t. dT;, ~ B;}), and set m, = g.cd.(e;, d,), a, = e,/m,.
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Assume furthermore H{(X,Z) = 0 and H*(G,C*) = 0 (e.g., if G is cyclic).
Then

(ii) the exponent B of L/Imn* is the least common multiple « of the numbers
Aqye ="y Ay

Proof. 1If m is the order of the group G, we have m,7* = m (Identity),
hence «* is injective, and im7* C (kerm,)* by the projection formula
7m*x +y = x - myy. Moreover, since 7*m, = L, < g*, tensoring over Q, ker
is the kernel of the projector onto the subspace of invariants, and (ker#,)* =
NS(X)C. If x € L, then g*x = x Vg € G; hence mx = 7* (7,x) and the first
assertion is proven.

Since H,(X,Z) =0, any element x in L is represented by a divisor D s.t.
g*D=DVgeG. ’

Consider the sheaf #= 0, (D) of rational functions f with div(f) — D >
0: by assumption, Vg € G there exists an isomorphism between ¥ and g*¥,
hence, defining G(£) = {(g,8)|g € G and § is an isomorphism from g* &
to &}, we have a central extension
(5) 0->C*->G(&)->G-0.

We notice that

Sublemma 6. (5) splits if and only if D is linearly equivalent to a G-invariant
divisor D’ (i.e., g(D"y= D’ Vg € G).

Proof. The “if” part is obvious, since then #= @(D") and the condition
div(f) — D’ > 0 is clearly G-invariant, hence there is an action of G on "¢
which makes (5) split. Conversely, if (5) splits there is an action of G on &,
and the sheaf (7, %) is nonzero.

If H is a very ample divisor on Y = X/G, for m > 0 the sheaf (7,.%)°(mH)
has a section, hence D + ma* H is linearly equivalent to an effective divisor
C, which is G-invariant. g.e.d.

Now the extensions of G by C* are classified by H%(G,C*); hence, if
H?*(G,C*) =0, D is linearly equivalent to a G-invariant divisor, and we can
only consider the case of an effective G-invariant divisor C. In this case, if
R, = 77Y(B,) 4> We can write C as C = Cp + C’, where Cp, C’ are effective,
no component of the ramification divisor R appearsin C’, and Cr = £*_, b,R,
(since g(C) = C Vg € G, this is possible).

We have

74(C) =mI’ + 3 (bm/e;) B, ~ mI’ + ) (bd;m/e)T;

since B, is exactly d-divisible.
Now
mC = 7*m,(C) = ma*(T’) + Y (b,d;m/e;)n*(T}),
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hence
aC = 7*(al’) + Y, (a/a;)b,(d,/m;)n*(T,),

thus aC belongs to im 7 *.

Conversely, we claim that the class of R, in L/im#* has period exactly
equal to a,.

In fact a;R; = (d,/m;)m*(I}), as we have seen, and if there exists a divisor
T and some integer ¢ dividing a; such that ¢R; = #*(T'), applying =, we get

ml ~ cm(R;) ~ (cm/e;) B,.
Hence eI ~ ¢B, ~ cd,I;,, thus (e; =am,!) amTI ~ (ecmd,/m;)I" and
(d;,/m)T;, ~ a,/ct. Since d,/m; and a;/c are relatively prime, I is a,/c
divisible, therefore a, = c.

Remark. The above proof shows that, in general, 8 > a.

Corollary 7. Let w: X — Y be a finite Galois cover with group G s.t. w is the
composition of Galois covers as in (ii) of Lemma 4, each such that the corre-
sponding integer o equals 1. Then NS(X)C = #*(NS(Y)).

Proof. The proof is by induction on the number of steps: in fact if N is a
normal subgroup of G and Z = X/N is smooth, let p: X - Z, q:Z - Y be
the quotient morphisms. Since p* and g* are injective by Lemma 4, we can
identify NS(Y') and NS(Z) to subgroups of the free abelian group NS( X).

Let T = G/N:by induction NS(Y) = NS(Z)' = (NS(X)")F = NS(X)C.
g.e.d.

Remark. The result of Corollary 7 can be stated in a greater generality, in
particular one does not need the intermediate quotients to be smooth.

Proof of the theorem. Recall that 7:S — Q = P! X P! is a smooth simple
bidouble cover of type (2a,2b), (2n,2m) if 7 is a finite (Z /2)* Galois cover,
S is a smooth surface, and the branch locus of # consists of two curves of
respective bidegrees (2a,2b), 2n,2m).

Apply Lemma 2 to the integer 2k. Then, for i =1,---,2k set (in the
notations of the lemma)

a;=(u;+w)/2+1, ni=(u,—w)/2+1,
bi=(v,—z)/2+1, m;=(v,+z2)/2+1,
and let, for i = 1,---,2k, m,: S, = Q be a smooth simple bidouble cover of

type (2a;,2b;), (2n,,2m;). As in [1], p. 506] we see that

K2 =8M, x(0s)=2up, +(u;+0v,)+2~ 4wz, =3IM+2—iN.
Moreover,
(8) KS, = 77'i*(@Q(ui’ Ui))
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and, u;, v; being even, K is 2-divisible: hence, by Freedman’s theorem [4] (cf.
also [1, Theorem 4.6]), all the surfaces S; are (orientedly) homeomorphic.
Applying Corollary 6 to #,:S; > @, and using (8), we see that r(S;)=
max{r € N|(1/r)Kg € H™(S,, Z)) equals the greatest common divisor (u,, ;).

By Corollary 3 there are at least k of the 2k surfaces Sy, -, S,,, which
satisfy the requirements of the theorem (S, is simply connected by [1, Proposi-
tion 2.7]), since r(S) is a deformation invariant, as is easy to show.
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